(a chemical reaction in which an acid and a base react in stoichiometric amounts to produce water and a salt), (the general term for any ionic substance that does not have, logarithmic scale used to express the hydrogen ion (H. solution in which the total positive charge from all the cations is matched by an identical total negative charge from all the anions. In contrast, a base was any substance that had a bitter taste, felt slippery to the touch, and caused color changes in plant dyes that differed diametrically from the changes caused by acids (e.g., turning red litmus paper blue). Because of its more general nature, the BrnstedLowry definition is used throughout this text unless otherwise specified. The BrnstedLowry definition of an acid is essentially the same as the Arrhenius definition, except that it is not restricted to aqueous solutions. 0.13 M HCl; magnesium carbonate, MgCO3, or aluminum hydroxide, Al(OH)3. . A We first write the balanced chemical equation for the reaction: \(2HCl(aq) + CaCO_3(s) \rightarrow CaCl_2(aq) + H_2CO_3(aq)\). Each carbonate ion can react with 2 mol of H+ to produce H2CO3, which rapidly decomposes to H2O and CO2. The sodium hydroxide is a strong base, it dissociates in Na+ and OH-. Autoionization of water. An example, using ammonia as the base, is H2O + NH3 OH + NH4+. For practical purposes, the pH scale runs from pH = 0 (corresponding to 1 M H+) to pH 14 (corresponding to 1 M OH), although pH values less than 0 or greater than 14 are possible. General acid-base reactions, also called neutralization reactions can be summarized with the following reaction equation: ACID (aq) + BASE (aq) H 2 O (l) + SALT (aq) or (s) The DRIVING FORCE for a general acid-base reaction is the formation of water. A 25.00 mL sample of a 0.9005 M solution of HCl is diluted to 500.0 mL. Acid/base questions. Moderators: Chem_Mod, Chem_Admin. These reactions produce salt, water and carbon dioxide. For example, aspirin is an acid (acetylsalicylic acid), and antacids are bases. Acid-base reactions are essential in both biochemistry and industrial chemistry. Following are some of the examples which will help you to understand the process and reaction taking place between acid and base which will give the end product as a salt. Conversely, bases that do not contain the hydroxide ion accept a proton from water, so small amounts of OH are produced, as in the following: \( \underset{base}{NH_3 (g)} + \underset{acid}{H_2 O(l)} \rightleftharpoons \underset{acid}{NH_4^+ (aq)} + \underset{base}{OH^- (aq)} \). In this case, the water molecule acts as an acid and adds a proton to the base. Qualitatively, however, we can state that strong acids (An acid that reacts essentially completely with water) to give \(H^+\) and the corresponding anion. The acidity or basicity of an aqueous solution is described quantitatively using the pH scale. If the base is a metal hydroxide, then the general formula for the reaction of an acid with a base is described as follows: Acid plus base yields water plus salt. . Strong acids and strong bases are both strong electrolytes. HCl + NaOH H2O + NaOH. Although these definitions were useful, they were entirely descriptive. The pH of the perchloric acid solution is thus, \(pH = -log[H^+] = -log(2.1 \times 10^{-2}) = 1.68\). The acid is nitric acid, and the base is calcium hydroxide. Classify each compound as a strong acid, a weak acid, a strong base, or a weak base in aqueous solution. Determine the reaction. What specific point does the BrnstedLowry definition address? Because the autoionization reaction produces both a proton and a hydroxide ion, the OH concentration in pure water is also 1.0 107 M. Pure water is a neutral solutionA solution in which the total positive charge from all the cations is matched by an identical total negative charge from all the anions., in which [H+] = [OH] = 1.0 107 M. The pH scale describes the hydrogen ion concentration of a solution in a way that avoids the use of exponential notation; pHThe negative base-10 logarithm of the hydrogen ion concentration: pH=-log[H+] is defined as the negative base-10 logarithm of the hydrogen ion concentration:pH is actually defined as the negative base-10 logarithm of hydrogen ion activity. An acid-base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid-base theories, for example, Brnsted-Lowry acid-base theory. The salt that is formed comes from the acid and base. Write the balanced chemical equation for the reaction of propionic acid with calcium hydroxide. and weak bases (A base in which only a fraction of the molecules react with water to produce \(OH^-\) and the corresponding cation) react with water to produce ions, so weak acids and weak bases are also weak electrolytes. In an aqueous solution, water will self-ionize meaning that two water molecules engage in an acid-base reaction and create a hydronium and hydroxide ion. Multiply the number of moles by the percentage to obtain the quantity of acid that must be neutralized. Acid Base Neutralization Reactions & Net Ionic Equations Example: Writing a Molecular Equation for a Neutralisation Reaction. Although many substances exist in a range of pH values (indicated in parentheses), they are plotted using typical values. The reaction is as below. Sulfuric acid is unusual in that it is a strong acid when it donates its first proton (Equation \(\PageIndex{8}\) ) but a weak acid when it donates its second proton (Equation 8.7.9) as indicated by the single and double arrows, respectively: \[ \underset{strong\: acid}{H_2 SO_4 (l)} \xrightarrow {H_2 O(l)} H ^+ (aq) + HSO_4 ^- (aq) \], \[ \underset{weak\: acid}{HSO_4^- (aq)} \rightleftharpoons H^+ (aq) + SO_4^{2-} (aq) \]. Weak acid vs strong base. ; in Equation \(\PageIndex{12}\), they are NH4+/NH3 and H2O/OH. . If the acid and base are equimolar, the . Figure \(\PageIndex{1}\) The Reaction of Dilute Aqueous HCl with a Solution of Na2CO3 Note the vigorous formation of gaseous CO2. Because the gaseous product escapes from solution in the form of bubbles, the reverse reaction cannot occur. The aluminum metal ion has an unfilled valence shell, so it . For example, monoprotic acids (a compound that is capable of donating one proton per molecule) are compounds that are capable of donating a single proton per molecule. B Next we need to determine the number of moles of HCl present: \( 75\: \cancel{mL} \left( \dfrac{1\: \cancel{L}} {1000\: \cancel{mL}} \right) \left( \dfrac{0 .20\: mol\: HCl} {\cancel{L}} \right) = 0. What is the molarity of the final solution? Figure 8.7.2 A Plot of pH versus [H+] for Some Common Aqueous Solutions. Tools have been developed that make the measurement of pH simple and convenient (Figure 8.6.3). (a compound that can donate three protons per molecule in separate steps). When these two substances are mixed, they react to form carbon dioxide gas, water, and sodium acetate. Why was it necessary to expand on the Arrhenius definition of an acid and a base? In practice, only a few strong acids are commonly encountered: HCl, HBr, HI, HNO3, HClO4, and H2SO4 (H3PO4 is only moderately strong). A Write the balanced chemical equation for the reaction and then decide whether the reaction will go to completion. Acids other than the six common strong acids are almost invariably weak acids. All other polyprotic acids, such as H3PO4, are weak acids. Would you expect the CH3CO2 ion to be a strong base or a weak base? 4.3: Acid-Base Reactions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by LibreTexts. Acidbase reactions require both an acid and a base. Step 1/3. The net ionic equation for the reaction of any strong acid with any strong base is identical to Equation \(\PageIndex{15}\). Except for the reaction of a weak acid or a weak base with water, acidbase reactions essentially go to completion. Note: The assumption that [H+] is the same as the concentration of the acid is valid for only strong acids. Using the balanced chemical equation for the acid dissociation reaction and Equation \(\PageIndex{24}\) or \(\PageIndex{25}\), determine [H+] and convert it to pH or vice versa. Because we want to neutralize only 90% of the acid present, we multiply the number of moles of HCl by 0.90: \((0.015\: mol\: HCl)(0.90) = 0.014\: mol\: HCl\), We know from the stoichiometry of the reaction that each mole of CaCO3 reacts with 2 mol of HCl, so we need, \( moles\: CaCO_3 = 0 .014\: \cancel{mol\: HCl} \left( \dfrac{1\: mol\: CaCO_3}{2\: \cancel{mol\: HCl}} \right) = 0 .0070\: mol\: CaCO_3 \), \( \left( \dfrac{500\: \cancel{mg\: CaCO_3}} {1\: Tums\: tablet} \right) \left( \dfrac{1\: \cancel{g}} {1000\: \cancel{mg\: CaCO_3}} \right) \left( \dfrac{1\: mol\: CaCO_3} {100 .1\: \cancel{g}} \right) = 0 .00500\: mol\: CaCO_ 3 \). (Assume the density of the solution is 1.00 g/mL.). The molecular equation reveals the least about the species in solution and is actually somewhat misleading because it shows all the reactants and products as if they were intact undissociated compounds.. According to Arrhenius, the characteristic properties of acids and bases are due exclusively to the presence of H+ and OH ions, respectively, in solution. In fact, this is only one possible set of definitions. Acid Base Reaction Example Hydrochloric acid and Sodium hydroxide Hydrochloric acid is a strong acid. B If inorganic, determine whether the compound is acidic or basic by the presence of dissociable H+ or OH ions, respectively. Because HCl is a strong acid and CO32 is a weak base, the reaction will go to completion. 0.25 moles NaCl M = 5 L of solution . One example of an acid-base reaction that occurs in everyday life is the reaction between vinegar (acetic acid) and baking soda (sodium bicarbonate). The reaction of a strong acid with a strong base is a neutralization reaction, which produces water plus a salt. The reaction is then said to be in equilibrium (the point at which the rates of the forward and reverse reactions become the same, so that the net composition of the system no longer changes with time). Acids differ in the number of protons they can donate. )%2F04%253A_Reactions_in_Aqueous_Solution%2F4.03%253A_Acid-Base_Reactions, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), A substance with at least one hydrogen atom that can dissociate to form an anion and an, (a substance that produces one or more hydroxide ions (\(OH^-\) and a cation when dissolved in aqueous solution, thereby forming a basic solution), (a compound that is capable of donating one proton per molecule), A compound that can donate more than one proton per molecule is known as a, compound that can donate two protons per molecule in separate steps). Moreover, many of the substances we encounter in our homes, the supermarket, and the pharmacy are acids or bases. Note that both show that the pH is 1.7, but the pH meter gives a more precise value. ), { "4.01:_General_Properties_of_Aqueous_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.02:_Precipitation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.03:_Acid-Base_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.04:_Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.05:_Concentration_of_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.06:_Solution_Stoichiometry_and_Chemical_Analysis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.E:_Reactions_in_Aqueous_Solution_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.S:_Reactions_in_Aqueous_Solution_(Summary)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Introduction_-_Matter_and_Measurement" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Atoms_Molecules_and_Ions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Stoichiometry-_Chemical_Formulas_and_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Reactions_in_Aqueous_Solution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Thermochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Electronic_Structure_of_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Periodic_Properties_of_the_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Basic_Concepts_of_Chemical_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Molecular_Geometry_and_Bonding_Theories" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Liquids_and_Intermolecular_Forces" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Solids_and_Modern_Materials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Properties_of_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Chemical_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_AcidBase_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Additional_Aspects_of_Aqueous_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Chemistry_of_the_Environment" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Chemical_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Chemistry_of_the_Nonmetals" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Chemistry_of_Coordination_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Chemistry_of_Life-_Organic_and_Biological_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "equilibrium", "conjugate acid", "conjugate base", "hydronium ion", "strong acid", "strong base", "diprotic acid", "triprotic acid", "pH", "weak acid", "acid", "base", "neutralization reaction", "salt", "weak base", "amphoteric", "monoprotic acid", "acid-base indicator", "conjugate acid-base pair", "pH scale", "neutral solution", "showtoc:no", "license:ccbyncsa", "licenseversion:30" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FGeneral_Chemistry%2FMap%253A_Chemistry_-_The_Central_Science_(Brown_et_al. HI is a halogen acid. Assume that the stomach of someone suffering from acid indigestion contains 75 mL of 0.20 M HCl. Neutralization Reaction - Acid-Base Reaction to form Salt and Water Relation Between the Strength of Reactants and Resultant pH Depending upon the strength of the constituent acids and bases the pH of the products varies. Strong acids and strong bases are both strong electrolytes. Example: HCl (aq) + NaOH (aq) NaCl (aq) + H2O (l) NaCl is the salt is this reaction and you already know water. \(2CH_3CO_2Na(s) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2CH_3CO_2H(aq)\). it . Map: General Chemistry: Principles, Patterns, and Applications (Averill), { "4.01:_Aqueous_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.02:_Solution_Concentrations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.03:__Stoichiometry_of_Reactions_in_Solution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.04:_Ionic_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.05:_Precipitation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.06:_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.07:_Acid_Base_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.08:_The_Chemistry_of_Acid_Rain" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.09:__Quantitative_Analysis_Using_Titration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.10:__Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.11:_Essential_Skills_3" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Introduction_to_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Molecules_Ions_and_Chemical_Formulas" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Reactions_in_Aqueous_Solution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Energy_Changes_in_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_The_Structure_of_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_The_Periodic_Table_and_Periodic_Trends" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Ionic_versus_Covalent_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Molecular_Geometry_and_Covalent_Bonding_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Fluids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Solids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Chemical_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Aqueous_AcidBase_Equilibriums" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Solubility_and_Complexation_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Chemical_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Periodic_Trends_and_the_s-Block_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_The_p-Block_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_The_d-Block_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Organic_Compounds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "hypothesis:yes", "showtoc:yes", "license:ccbyncsa", "authorname:anonymous", "licenseversion:30" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FGeneral_Chemistry%2FBook%253A_General_Chemistry%253A_Principles_Patterns_and_Applications_(Averill)%2F04%253A_Reactions_in_Aqueous_Solution%2F4.07%253A_Acid_Base_Reactions, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), A substance with at least one hydrogen atom that can dissociate to form an anion and an, (a substance that produces one or more hydroxide ions (\(OH^-\) and a cation when dissolved in aqueous solution, thereby forming a basic solution), (a compound that is capable of donating one proton per molecule).
Shaq's Yacht Is Literally A Floating Mansion,
Articles A